
Security Assessment

Dotlab - Audit
TechRight Verified on 05 May, 2023

Disclaimer

Description

Vulnerability & Risk Level

Auditing Strategy and Techniques

Tested Contract Files

Scope

Source Units in Scope

Out of Scope

Excluded Source Units

Duplicate Source Units

Doppelganger Contracts

Report Overview

Risk Summary

Source Lines

Inline Documentation

Components

Exposed Functions

StateVariables

Capabilities

Dependencies

Totals

Detectors Issue

Summary

Owner privileges

Table of contents

TechRight.io Reports do not constitute an endorsement or disapproval of any specific project or team, and they should not be taken as an indication of the
economic value of any product or asset created by a team. Additionally, TechRight.io does not perform testing or auditing of integration with external contracts or
services like Unicrypt, Uniswap, PancakeSwap, and others.

TechRight.io Audits do not offer any assurance or pledge about the complete absence of bugs in the evaluated technology, and they do not give any hint about
the owners of the technology. These audits should not be relied upon to make any investment or participation decisions in any specific project, nor should they be
used as any form of investment advice.

TechRight.io Reports involve a comprehensive auditing process to support our clients in enhancing their code quality while reducing the risk associated with
blockchain technology and cryptographic assets. Please note that every company and individual is responsible for conducting their own due diligence and
maintaining continuous security. Please note that TechRight does not guarantee the security or functionality of the technology we confirm to evaluate.

Network

Arbitrum

Website

https://www.dotlab.app

Telegram

https://t.me/Dotlabofficial

Twitter

https://twitter.com/dotlabofficial

DApp

https://ans.dotlab.app

Whitepaper

https://dotlab.gitbook.io/dotlab-whitepaper

Zealy (Crew3)

https://dotlab.zealy.io

Disclaimer

Description

https://www.dotlab.app/
https://t.me/Dotlabofficial
https://twitter.com/dotlabofficial
https://ans.dotlab.app/
https://dotlab.gitbook.io/dotlab-whitepaper/
https://dotlab.zealy.io/

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or system. Risk Level is
computed based on CVSS version 3.0

Level Value Vulnerability Risk
(Required Action)

Critical 9 - 10 A vulnerability that can disrupt the contract functioning in a number
of scenarios, or creates a risk that the contract may be broken.

Immediate action to reduce risk
level.

High 7 -
8.9

A vulnerability that affects the desired outcome when using a
contract, or provides the opportunity to use a contract in an
unintended way.

Implementation of corrective actions
as soon as possible.

Medium 4 -
6.9

A vulnerability that could affect the desired outcome of executing
the contract in a specific scenario.

Implementation of corrective actions
in a certain period.

Low 2 -
3.9

A vulnerability that does not have a significant impact on possible
scenarios for the use of the contract and is probably subjective.

Implementation of certain corrective
actions or accepting the risk.

Informational 0 -
1.9

A vulnerability that has informational character but is not affecting
any of the code.

An observation that does not
determine a level of risk

During the evaluation process, the repository was thoroughly examined to identify any security-related concerns, assess code quality, and ensure adherence to
specifications and best practices. Our team of expert pentesters and smart contract developers reviewed the code line-by-line and documented any issues
identified.

Vulnerability & Risk Level

Auditing Strategy and Techniques Applied

The auditing process follows a step-by-step routine:

1. Code review that includes:
i. Review of the specifications, sources and instructions provided to TechRight to ensure a thorough understanding of the size, scope, and functionality of the
smart contract's.

ii. Manual review of code, which involves carefully reading the source code line-by-line to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of confirming whether the code performs as described in the specifications, sources, and instructions
provided.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which involves assessing the degree to which test cases cover the code and how much of the code is executed while running
those test cases.

ii. Symbolic execution, which refers to the analysis of a program to identify the inputs that trigger each component of the program to execute.

3. Best practices review, which involves evaluating smart contracts to enhance efficiency, effectiveness, clarity, maintainability, security, and control in
accordance with industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations that enable you to take necessary measures to secure your smart contracts.

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise, after the security review. A different Hash could be (but not necessarily) an indication of a
changed condition or potential vulnerability that was not within the scope of this review

Methodology

Tested Contract Files

This section lists files that are in scope for the metrics report.

Project: Dotlab

Included Files:

``

Excluded Paths:

``

File Limit: undefined

Exclude File list Limit: undefined

Workspace Repository: unknown (undefined @ undefined)

Source Units Analyzed: 1
Source Units in Scope: 1 (100%)

Type File Logic
Contracts Interfaces Lines nLines nSLOC Comment

Lines
Complex.
Score Capabilities

📝
🔍

StakeDTL.sol 1 1 255 249 176 12 183 📤

📝
🔍

Totals 1 1 255 249 176 12 183 📤

Legend:

Lines: total lines of the source unit

nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)

nSLOC: normalized source lines of code (only source-code lines; no comments, no blank lines)

Comment Lines: lines containing single or block comments

Complexity Score: a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external
interfaces, ...)

Source Units Excluded: 0

File

None

Duplicate Source Units Excluded: 0

File

None

Doppelganger Contracts: 0

File Contract Doppelganger

Scope

Source Units in Scope

Out of Scope

Excluded Source Units

Duplicate Source Units

Doppelganger Contracts

The analysis finished with 0 errors and 0 duplicate files.

Comment-to-Source Ratio: On average there are 15.08 code lines per comment (lower=better).

Report

Overview

Risk

Source Lines (sloc vs. nsloc)

Inline Documentation

ToDo's: 0

📝Contracts 📚Libraries 🔍Interfaces 🎨Abstract

1 0 1 0

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

🌐Public 💰Payable

16 0

External Internal Private Pure View

16 16 0 1 4

Total 🌐Public

15 11

Solidity Versions
observed

🧪 Experimental
Features

💰 Can Receive
Funds

🖥 Uses
Assembly

💣 Has Destroyable
Contracts

^0.8.18

📤 Transfers
ETH

⚡ Low-Level
Calls

👥
DelegateCall

🧮 Uses Hash
Functions

🔖
ECRecover

🌀
New/Create/Create2

yes

♻ TryCatch Σ Unchecked

Dependency / Import Path Count

@openzeppelin/contracts/access/Ownable.sol 1

@openzeppelin/contracts/security/Pausable.sol 1

@openzeppelin/contracts/security/ReentrancyGuard.sol 1

@openzeppelin/contracts/utils/Context.sol 1

@openzeppelin/contracts/utils/math/SafeMath.sol 1

Components

Exposed Functions

StateVariables

Capabilities

Dependencies / External Imports

Totals

Summary

AST Node Statistics

Function Calls

Assembly Calls

AST Total

Inheritance Graph

Sūrya's Description Report Files Description Table

File Name SHA-1 Hash

StakeDTL.sol fa536a0dc5bb30b918816e6b026b4a2ff0bd87f8

Contracts Description Table

Contract Type Bases

 └ Function Name Visibility Mutability Modifiers

Token Interface

└ transfer External ❗ 🛑 NO❗

└ balanceOf External ❗ NO❗

└ transferFrom External ❗ 🛑 NO❗

└ approve External ❗ 🛑 NO❗

StakeDTL Implementation Pausable, Ownable, ReentrancyGuard

└ Public ❗ 🛑 NO❗

└ addReward External ❗ 🛑 onlyOwner

└ divCeil Internal 🔒

└ distributeRewards Internal 🔒 🛑

└ claimAllRewards External ❗ 🛑 nonReentrant

└ stakeToken External ❗ 🛑 whenNotPaused nonReentrant

└ unstake External ❗ 🛑 nonReentrant

└ getStakeInstances External ❗ NO❗

└ getTokenExpiry External ❗ NO❗

└ pause External ❗ 🛑 onlyOwner

└ unpause External ❗ 🛑 onlyOwner

└ getClaimedRewards External ❗ NO❗

└ distributeRewardsPublic External ❗ 🛑 onlyOwner

└ setRewardPercentage External ❗ 🛑 onlyOwner

└ emergencyWithdraw External ❗ 🛑 onlyOwner

Legend

Symbol Meaning

🛑 Function can modify state

💵 Function is payable

Contract Summary

Description Check Impact Confidence

StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128) performs a
multiplication on the result of a division:
- rewardsForTwentyFourHours = totalRewards.mul(rewardPercentage).div(100)
(contracts/stakedlt/StakeDTL.sol#98)
- rewardsToDistribute =
divCeil(rewardsForTwentyFourHours.mul(elapsedTime),86400).div(PRECISION)
(contracts/stakedlt/StakeDTL.sol#99)

divide-
before-
multiply

Medium Medium

Reentrancy in StakeDTL.stakeToken(uint256,uint8)
(contracts/stakedlt/StakeDTL.sol#147-174):
External calls:
- require(bool,string)
(dtlToken.transferFrom(msgSender(),address(this),stakeAmount),Token transfer
failed!) (contracts/stakedlt/StakeDTL.sol#152)
State variables written after the call(s):
- stakeInfos[msgSender()].push(StakeInfo(block.timestamp,block.timestamp +
lockPeriods[lockPeriodIndex],stakeAmount,shares,lockPeriodIndex))
(contracts/stakedlt/StakeDTL.sol#158-164)
StakeDTL.stakeInfos (contracts/stakedlt/StakeDTL.sol#50) can be used in cross
function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.getStakeInstances(address) (contracts/stakedlt/StakeDTL.sol#215-217)
- StakeDTL.getTokenExpiry(uint256) (contracts/stakedlt/StakeDTL.sol#219-222)
- StakeDTL.stakeInfos (contracts/stakedlt/StakeDTL.sol#50)
- totalShares += shares (contracts/stakedlt/StakeDTL.sol#155)
StakeDTL.totalShares (contracts/stakedlt/StakeDTL.sol#30) can be used in cross
function reentrancies:
- StakeDTL.constructor(Token,Token) (contracts/stakedlt/StakeDTL.sol#58-69)
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.totalShares (contracts/stakedlt/StakeDTL.sol#30)
- totalStakers += 1 (contracts/stakedlt/StakeDTL.sol#168)
StakeDTL.totalStakers (contracts/stakedlt/StakeDTL.sol#32) can be used in cross
function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.totalStakers (contracts/stakedlt/StakeDTL.sol#32)
- userTotalShares[_msgSender()] += shares (contracts/stakedlt/StakeDTL.sol#156)
StakeDTL.userTotalShares (contracts/stakedlt/StakeDTL.sol#51) can be used in cross
function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.userTotalShares (contracts/stakedlt/StakeDTL.sol#51)

reentrancy-
no-eth Medium Medium

Reentrancy in StakeDTL.unstake(uint256) (contracts/stakedlt/StakeDTL.sol#176-213):
External calls:
- require(bool,string)(dtlToken.transfer(msgSender(),stakeAmount),Token transfer
failed!) (contracts/stakedlt/StakeDTL.sol#185)
- require(bool,string)
(rewardToken.transfer(msgSender(),stakerUnclaimedRewards),Token transfer failed!)
(contracts/stakedlt/StakeDTL.sol#205)
State variables written after the call(s):
- unclaimedRewards[_msgSender()] = 0 (contracts/stakedlt/StakeDTL.sol#208)
StakeDTL.unclaimedRewards (contracts/stakedlt/StakeDTL.sol#52) can be used in
cross function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.unclaimedRewards (contracts/stakedlt/StakeDTL.sol#52)

reentrancy-
no-eth Medium Medium

Reentrancy in StakeDTL.claimAllRewards() (contracts/stakedlt/StakeDTL.sol#131-
142):
External calls:
- require(bool,string)
(rewardToken.transfer(msgSender(),stakerUnclaimedRewards),Token transfer failed!)
(contracts/stakedlt/StakeDTL.sol#137)
State variables written after the call(s):
- unclaimedRewards[msgSender()] = 0 (contracts/stakedlt/StakeDTL.sol#140)
StakeDTL.unclaimedRewards (contracts/stakedlt/StakeDTL.sol#52) can be used in
cross function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.unclaimedRewards (contracts/stakedlt/StakeDTL.sol#52)

reentrancy-
no-eth Medium Medium

Detectors Issue

Description Check Impact Confidence

Reentrancy in StakeDTL.unstake(uint256) (contracts/stakedlt/StakeDTL.sol#176-213):
External calls:
- require(bool,string)(dtlToken.transfer(msgSender(),stakeAmount),Token transfer
failed!) (contracts/stakedlt/StakeDTL.sol#185)
State variables written after the call(s):
- delete stakeInfos[msgSender()]stakeIndex
StakeDTL.stakeInfos (contracts/stakedlt/StakeDTL.sol#50) can be used in cross
function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.getStakeInstances(address) (contracts/stakedlt/StakeDTL.sol#215-217)
- StakeDTL.getTokenExpiry(uint256) (contracts/stakedlt/StakeDTL.sol#219-222)
- StakeDTL.stakeInfos (contracts/stakedlt/StakeDTL.sol#50)
- totalShares -= stakeShares (contracts/stakedlt/StakeDTL.sol#187)
StakeDTL.totalShares (contracts/stakedlt/StakeDTL.sol#30) can be used in cross
function reentrancies:
- StakeDTL.constructor(Token,Token) (contracts/stakedlt/StakeDTL.sol#58-69)
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.totalShares (contracts/stakedlt/StakeDTL.sol#30)
- totalStakers -= 1 (contracts/stakedlt/StakeDTL.sol#198)
StakeDTL.totalStakers (contracts/stakedlt/StakeDTL.sol#32) can be used in cross
function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.totalStakers (contracts/stakedlt/StakeDTL.sol#32)
- userTotalShares[_msgSender()] -= stakeShares
(contracts/stakedlt/StakeDTL.sol#188)
StakeDTL.userTotalShares (contracts/stakedlt/StakeDTL.sol#51) can be used in cross
function reentrancies:
- StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128)
- StakeDTL.userTotalShares (contracts/stakedlt/StakeDTL.sol#51)

reentrancy-
no-eth Medium Medium

StakeDTL.setRewardPercentage(uint256) (contracts/stakedlt/StakeDTL.sol#240-243)
should emit an event for:
- rewardPercentage = newRewardPercentage (contracts/stakedlt/StakeDTL.sol#242)

events-
maths Low Medium

StakeDTL.addReward(uint256) (contracts/stakedlt/StakeDTL.sol#72-75) should emit
an event for:
- totalRewards += amount (contracts/stakedlt/StakeDTL.sol#74)

events-
maths Low Medium

Reentrancy in StakeDTL.addReward(uint256) (contracts/stakedlt/StakeDTL.sol#72-
75):
External calls:
- require(bool,string)
(rewardToken.transferFrom(_msgSender(),address(this),amount),Token transfer
failed!) (contracts/stakedlt/StakeDTL.sol#73)
State variables written after the call(s):
- totalRewards += amount (contracts/stakedlt/StakeDTL.sol#74)

reentrancy-
benign Low Medium

Reentrancy in StakeDTL.unstake(uint256) (contracts/stakedlt/StakeDTL.sol#176-213):
External calls:
- require(bool,string)(dtlToken.transfer(msgSender(),stakeAmount),Token transfer
failed!) (contracts/stakedlt/StakeDTL.sol#185)
- require(bool,string)
(rewardToken.transfer(msgSender(),stakerUnclaimedRewards),Token transfer failed!)
(contracts/stakedlt/StakeDTL.sol#205)
State variables written after the call(s):
- claimedRewards[_msgSender()] += stakerUnclaimedRewards
(contracts/stakedlt/StakeDTL.sol#206)

reentrancy-
benign Low Medium

Reentrancy in StakeDTL.claimAllRewards() (contracts/stakedlt/StakeDTL.sol#131-
142):
External calls:
- require(bool,string)
(rewardToken.transfer(msgSender(),stakerUnclaimedRewards),Token transfer failed!)
(contracts/stakedlt/StakeDTL.sol#137)
State variables written after the call(s):
- claimedRewards[msgSender()] += stakerUnclaimedRewards
(contracts/stakedlt/StakeDTL.sol#138)

reentrancy-
benign Low Medium

Reentrancy in StakeDTL.emergencyWithdraw(uint256)
(contracts/stakedlt/StakeDTL.sol#246-252):
External calls:

reentrancy-
events

Low Medium

file:///C:/Critic/project/Contract/tools/tech-right-tool/contracts/stakedlt/StakeDTL.sol#191

Description Check Impact Confidence
- require(bool,string)(rewardToken.transfer(owner(),amount),Token transfer failed!)
(contracts/stakedlt/StakeDTL.sol#250)
Event emitted after the call(s):
- EmergencyWithdraw(owner(),amount) (contracts/stakedlt/StakeDTL.sol#251)

StakeDTL.unstake(uint256) (contracts/stakedlt/StakeDTL.sol#176-213) uses
timestamp for comparisons
Dangerous comparisons:
- require(bool,string)(stakeInfos[_msgSender()][stakeIndex].endTS <
block.timestamp,Stake Time is not over yet) (contracts/stakedlt/StakeDTL.sol#180)

timestamp Low Medium

StakeDTL.distributeRewards() (contracts/stakedlt/StakeDTL.sol#87-128) uses
timestamp for comparisons
Dangerous comparisons:
- elapsedTime > 0 (contracts/stakedlt/StakeDTL.sol#96)
- require(bool,string)(rewardToken.balanceOf(address(this)) >=
rewardsToDistribute,Insufficient reward token balance)
(contracts/stakedlt/StakeDTL.sol#101)
- stakeInfos[staker][j].endTS < lastRewardDistribution
(contracts/stakedlt/StakeDTL.sol#115)

timestamp Low Medium

Different versions of Solidity are used:
- Version used: ['^0.8.0', '^0.8.18']
- ^0.8.0 (nodemodules/@openzeppelin/contracts/access/Ownable.sol#4)
- ^0.8.0 (nodemodules/@openzeppelin/contracts/security/Pausable.sol#4)
- ^0.8.0 (nodemodules/@openzeppelin/contracts/security/ReentrancyGuard.sol#4)
- ^0.8.0 (nodemodules/@openzeppelin/contracts/utils/Context.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#4)
- ^0.8.18 (contracts/stakedlt/MerkleTree.sol#2)
- ^0.8.18 (contracts/stakedlt/StakeDTL.sol#1)

pragma Informational High

SafeMath.tryDiv(uint256,uint256)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#64-69) is never
used and should be removed

dead-code Informational Medium

SafeMath.tryMod(uint256,uint256)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#76-81) is never
used and should be removed

dead-code Informational Medium

SafeMath.sub(uint256,uint256,string)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#168-177) is never
used and should be removed

dead-code Informational Medium

SafeMath.tryAdd(uint256,uint256)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#22-28) is never
used and should be removed

dead-code Informational Medium

SafeMath.mod(uint256,uint256,string)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#217-226) is never
used and should be removed

dead-code Informational Medium

SafeMath.div(uint256,uint256,string)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#191-200) is never
used and should be removed

dead-code Informational Medium

Context.msgData() (nodemodules/@openzeppelin/contracts/utils/Context.sol#21-23)
is never used and should be removed dead-code Informational Medium

SafeMath.mod(uint256,uint256)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#151-153) is never
used and should be removed

dead-code Informational Medium

SafeMath.tryMul(uint256,uint256)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#47-57) is never
used and should be removed

dead-code Informational Medium

SafeMath.trySub(uint256,uint256)
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#35-40) is never
used and should be removed

dead-code Informational Medium

MerkleTree.length(MerkleTree.Tree) (contracts/stakedlt/MerkleTree.sol#41-43) is
never used and should be removed dead-code Informational Medium

Description Check Impact Confidence

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol#4)
allows old versions

solc-
version Informational High

Pragma version^0.8.0
(node_modules/@openzeppelin/contracts/security/ReentrancyGuard.sol#4) allows old
versions

solc-
version Informational High

Pragma version^0.8.18 (contracts/stakedlt/MerkleTree.sol#2) necessitates a version
too recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.16

solc-
version Informational High

Pragma version^0.8.0
(node_modules/@openzeppelin/contracts/utils/math/SafeMath.sol#4) allows old
versions

solc-
version Informational High

Pragma version^0.8.0
(node_modules/@openzeppelin/contracts/security/Pausable.sol#4) allows old versions

solc-
version Informational High

solc-0.8.19 is not recommended for deployment solc-
version Informational High

Pragma version^0.8.0
(node_modules/@openzeppelin/contracts/access/Ownable.sol#4) allows old versions

solc-
version Informational High

Pragma version^0.8.18 (contracts/stakedlt/StakeDTL.sol#1) necessitates a version too
recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.16

solc-
version Informational High

StakeDTL.dtlToken (contracts/stakedlt/StakeDTL.sol#24) should be immutable immutable-
states Optimization High

CRITICAL HIGH MEDIUM LOW INFORMATIONAL OPTIMIZATION

Passed Passed 5 Issues 8 Issues 20 Issues 1 issues

No. Issue Description Status

1 No critical issues found The contract does not contain issues of high or medium criticality. This means that
no known vulnerabilities were found in the source code. Passed

2 Contract owner cannot
mint It is no possible to mint new tokens. Passed

3 Contract owner cannot
blacklist addresses It is not possible to lock user funds by blacklisting addresses. Passed

4 Contract owner cannot
set high fees

The fees, if applicable, can be a maximum of 25% or lower. The contract can
therefore not be locked. Please take a look in the comment section for more details. Passed

5 Contract owner cannot
blacklist addresses It is not possible to lock user funds by blacklisting addresses Passed

6 Contract cannot be
locked Owner cannot lock any user funds. Passed

Thinking about smart contract security? We can provide training, ongoing advice, and smart contract auditing. Contact us.

Summary

Owner privileges

https://techright.io/

